Galois Descent

نویسنده

  • KEITH CONRAD
چکیده

Let L/K be a field extension. A K-vector space W can be extended to an L-vector space L⊗KW , and W embeds into L⊗KW by w 7→ 1⊗w. Under this embedding, when W 6= 0 a K-basis {ei} of W turns into an L-basis {1⊗ ei} of L⊗KW . Passing from W to L⊗KW is called ascent. In the other direction, if we are given an L-vector space V 6= 0, we may ask how to describe the K-subspaces W ⊂ V such that a K-basis of W is an L-basis of V . Such a K-subspace W is called a K-form of V . For completeness, when V = 0 (so there is no basis), we regard W = 0 as a K-form of V . The passage from an L-vector space V to a K-form of V is called descent. Whether we can descend is the question of filling in the question mark in the figure below.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 00 8 Monadic Approach to Galois Descent and Cohomology

We describe a simplified categorical approach to Galois descent theory. It is well known that Galois descent is a special case of Grothendieck descent, and that under mild additional conditions the category of Grothendieck descent data coincides with the Eilenberg-Moore category of algebras over a suitable monad. This also suggests using monads directly, and our monadic approach to Galois desce...

متن کامل

MONADIC APPROACH TO GALOIS DESCENT AND COHOMOLOGY Dedicated to Dominique Bourn at the occasion of his sixtieth birthday

We describe a simplified categorical approach to Galois descent theory. It is well known that Galois descent is a special case of Grothendieck descent, and that under mild additional conditions the category of Grothendieck descent data coincides with the Eilenberg-Moore category of algebras over a suitable monad. This also suggests using monads directly, and our monadic approach to Galois desce...

متن کامل

Galois corings from the descent theory point of view

We introduce Galois corings, and give a survey of properties that have been obtained so far. The Definition is motivated using descent theory, and we show that classical Galois theory, Hopf-Galois theory and coalgebra Galois theory can be obtained as a special case.

متن کامل

Cubic surfaces with a Galois invariant pair of Steiner trihedra

We present a method to construct non-singular cubic surfaces over Q with a Galois invariant pair of Steiner trihedra. We start with cubic surfaces in a form generalizing that of A. Cayley and G. Salmon. For these, we develop an explicit version of Galois descent.

متن کامل

Extended Galois Theory and Dissonant Morphisms

For a given Galois structure on a category C and an eeective descent morphism p : E !B in C we describe the category of so-called weakly split objects over (E; p) in terms of internal actions of the Galois (pre)groupoid of (E; p) with an additional structure. We explain that this generates various known results in categorical Galois theory and in particular two results of M. Barr and R. Diacone...

متن کامل

Cubic surfaces with a Galois invariant double-six

We present a method to construct non-singular cubic surfaces over Q with a Galois invariant double-six. We start with cubic surfaces in the hexahedral form of L. Cremona and Th. Reye. For these, we develop an explicit version of Galois descent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009